rss
email
twitter
facebook

domenica 17 aprile 2011

La coscienza del Quantum Brain (1ª Parte)

Abbiamo visto parlando di mente estesa come i processi della "embodied mind" di percezione-cognizione-azione possano essere interpretati in termini di emergenza derivante da uno stretto accoppiamento tra il corpo-mente con sé stesso e con l'ambiente-mondo.

Ne è conseguito che quella che noi chiamiamo "coscienza" risulti in realtà non una "cosa" che accade dentro di noi, ma un processo complesso, dinamico ed aperto che deriva dalla co-esistenza e dalla co-evoluzione del sistema corpo-cervello con l'ambiente-mondo e viceversa.

Dunque, non avremo a che fare solo con i "correlati neurali", ma anche con quelli ambientali e socio-culturali, che avranno pieno titolo nella definizione dei contenuti mentali e dei relativi processi.

Una conseguenza importante è quella della irriducibilità della mente estesa a fattori meramente bio-chimici, per quanto importantissimi come si é detto (compresi quelli genetici), così come l'esecuzione di una musica non dipende solo dalle note scritte sul pentagramma.
In sintesi, il paradigma della mente estesa pur non facendo riferimento a leggi non fisiche e quindi rientrando, a mio parere, all'interno del principio di chiusura causale del mondo fisico (che è un principio, ripeto, metafisico materialistico e non una legge della fisica in senso stretto come le leggi della termodinamica) considera la coscienza non "zippabile" all'interno dell'individuo e non comprimibile alle sue singole componenti bio-chimiche in quanto è un processo emergente, complesso ed aperto al mondo, senza il quale non potrebbe nemmeno esistere.

In tale quadro, un modello molto interessante che mostra notevoli analogie con la mente estesa è quello del "dissipative quantum brain", elaborato dal fisico teorico italiano Giuseppe Vitiello ("My double unveiled", 2001) sulla base del modello di Ricciardi-Umezawa (1967; Stuart, Takahashi e Umezawa, 1978; 1979), e che proporrò nella versione affinata negli ultimi anni assieme al neurobiologo Walter J. Freeman, recentemente riproposta in forma sintetica e abbastanza comprensibile anche per "non addetti ai lavori" nel Journal of Cosmology con l'articolo "The Dissipative Brain and Non-Equilibrium Thermodynamics" , che fa riferimento anche al modello olonomico del cervello e della memoria (che, come vedremo, ha una funzione importante nel modello) frutto delle intuizioni e degli studi di Karl Pribram anche in collaborazione con David Bohm.

Prima di spiegare in sintesi ed in termini discorsivi il modello di Vitiello-Freeman, è necessario precisare che quando si parla di "quantum brain" lo si può fare essenzialmente in due modi, ossia considerando che nei modelli:
a.  i processi quantistici vengano considerati reali all'interno del cervello e siano descritti dal formalismo della meccanica quantistica (cd. "prima quantizzazione") o della teoria quantistica dei campi (cd. "seconda quantizzazione") (Licata, 2008);
b. i processi quantistici non vengano considerati reali, ma si utilizzi il formalismo quantistico per descrivere processi complessi caratterizzati da auto-organizzazione ed emergenza. In tal caso, si parla di  "Quantum like semantics", "in quanto i sistemi trattati non sono di natura quantistica ma seguono piuttosto una logica quantistica nelle relazioni tra sistema ed osservatore, cosa che modifica il significato del formalismo" (Licata, 2008).

Modelli del primo tipo sono ad esempio quello citato di Vitiello-Freeman e la teoria Orch-OR, tanto famosa quanto controversa, di Penrose-Hameroff, mentre modelli del secondo tipo sono quelli elaborati ad es. da Yuri Orlov o da Andrei Khrennikov (cfr. Licata cit.) o ancora gli studi connessionistici sulle "reti neurali quantistiche", come quelli di Avshalom C. Elitzur , con applicazioni ad esempio nella robotica evolutiva e nell'intelligenza artificiale post-classica basata in prevalenza sui sistemi sub-simbolici (connessionismo).


Quando si parla di "cervello quantistico" in senso reale ci riferiamo ad un sistema macroscopico quantistico a tutti gli effetti, come possono essere i fenomeni della superconduttività, superfluidità, i laser ed il quantum computing (che può essere digitale e quindi di tipo Turing o analogico, quindi super-Turing ma non universale).

Il concetto di sistema quantistico macroscopico ci riporta al famoso paradosso del gatto di Schrödinger (la sovrapposizione degli stati "gatto vivo" e "gatto morto") e quindi all'annoso problema della misura in fisica quantistica ed al collasso della funziona d'onda descritta dalla equazione di Schrödinger.
Il problema di fondo è capire "se e come" l'interazione fra strumenti di misura e "quanti" (e in generale fra realtà macro e realtà micro), di cui l'esempio tipico è l'esperimento delle due fenditure, determina la "scelta" di un valore tra le "infinite storie quantistiche" possibili o se invece la funzione d'onda "collassi" naturalmente indipendentemente dal ruolo dell'osservatore/misuratore come prevedono ad esempio l'ipotesi della decoerenza quantistica, in cui  "l'oggetto quantistico arriva all'apparato di misura già classico, dopo una sorta di decadimento legato a processi più o meno esotici oppure ad un opportuno gioco di interferenze distruttive tra le varie storie" (Licata, cit.), della riduzione dinamica della teoria GRW (Ghirardi-Rimini-Weber) o la stessa Orch-OR citata di Roger Penrose.

Del resto, come diceva ironicamente lo stesso John Stuart Bell nel suo "Against Measurement":
"La funzione d'onda del mondo ha per caso atteso di 'saltare' per migliaia di anni fino a che non è apparsa la prima creatura vivente monocellulare? Oppure ha aspettato ancora un pò di più, per aspettare qualche sistema meglio qualificato... con un dottorato?".
Quindi, da un lato nella meccanica quantistica l'osservatore e il ruolo del soggetto sono recuperati rispetto alla fisica classica in quanto l'osservatore è sempre "accoppiato" al sistema osservato e lo descrive da una prospettiva particolare, ma dall'altro si dibatte sull' "oggettività" della realtà quantistica a prescindere dal fatto che ci sia un osservatore che misura.

Tutto questo è fondamentale quando si parla di "quantum brain reale" perché se consideriamo il cervello come un sistema quantistico macroscopico reale, occorre capire le relazioni che intercorrono fra la realtà quantistica sottostante (l' "implicate order" di Bohm) e quella classica di tipo termodinamico (l' "explicate order") e come sia possibile che la realtà classica emerga da quella quantistica conservando proprietà quantistiche.
Nel prossimo post cominceremo a vedere queste relazioni secondo la proposta di Vitiello-Freeman, che intanto potete, se volete, cominciare a leggere nei link proposti.

Bookmark and Share

0 commenti:

Posta un commento

Benvenuto! I commenti sono sempre graditi.
Ti invito, però, a rispettare sempre la buona educazione e a non lasciare spam o commenti anonimi.
Grazie!